
LLNL-CONF-481092

Parallelizing Heavyweight
Debugging Tools with MPIecho

B. L. Rountree, G. X. Cobb, G. T. Gamblin, M. W.
Schulz, B. R. de Supinski, H. M. Tufo

April 22, 2011

First International Workshop on High-performance
Infrastructure for Scalable Tools
Tucson, AZ, United States
June 4, 2011 through June 4, 2011

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Parallelizing Heavyweight Debugging Tools with MPIecho

Barry Rountree
Lawrence Livermore National

Laboratory
rountree@llnl.gov

Guy Cobb
University of Colorado

guy.cobb@gmail.com

Todd Gamblin
Lawrence Livermore National

Laboratory
tgamblin@llnl.gov

Martin Schulz
Lawrence Livermore National

Laboratory
schulzm@llnl.gov

Bronis R. de Supinski
Lawrence Livermore National

Laboratory
bronis@llnl.gov

Henry Tufo
University of Colorado,

National Center for
Atmospheric Research

tufo@ucar.edu

ABSTRACT
Idioms created for debugging execution on single processors
and multicore systems have been successfully scaled to thou-
sands of processors, but there is little hope that this class of
techniques can continue to be scaled out to tens of millions of
cores. In order to allow development of more scalable debug-
ging idioms we introduce MPIecho, a novel runtime platform
that enables cloning of MPI ranks. Given identical execu-
tion on each clone, we then show how heavyweight debug-
ging approaches can be parallelized, reducing their overhead
to a fraction of the serialized case. We also show how this
platform can be useful in isolating the source of hardware-
based nondeterministic behavior and provide a case study
based on a recent processor bug at LLNL.

While total overhead will depend on the individual tool,
we show that the platform itself contributes little: 512x tool
parallelization incurs at worst 2x overhead across the NAS
Parallel benchmarks, hardware fault isolation contributes at
worst an additional 44% overhead. Finally, we show how
MPIecho can lead to near-linear reduction in overhead when
combined with Maid, a heavyweight memory tracking tool
provided with Intel’s Pin platform. We demonstrate over-
head reduction from 1, 466% to 53% and from 740% to 14%
for cg.D.64 and lu.D.64, respectively, using only an addi-
tional 64 cores.

1. INTRODUCTION
Existing debugging approaches in high performance com-

puting have not been able to scale beyond roughly 10K MPI
ranks. Classic debugging interfaces such as Totalview [20]
have been overwhelmed by the need to control and display
the state of all processors from a single screen. Heavyweight
debugging tools such as Valgrind [16] and Parallel Inspec-
tor [10] are indispensable when solving smaller problems,
but their overhead precludes their use at scale except as a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WHIST 2011 Tucson, Arizona, USA
This work performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344 (LLNL-CONF-481092).

last resort: memory checking can reach 160x slowdown and
thread checking can reach 1000x. Current best practices for
debugging hundreds of thousands of cores relies far too much
on the ingenuity of the debugger to stretch these tools be-
yond their limitations. This will only become more difficult
as machines scale to tens of millions of cores.

In this paper we propose leveraging these additional cores
for parallelizing heavyweight tools in order to reduce the over-
head incurred by existing tools and allowing the develop-
ment of novel approaches. Per-instruction instrumentation
such as used by the Maid memory access checking tool can
be rendered effectively embarrassingly parallel. The more
interesting cases, such as parallelizing read-before-write de-
tection, can still show substantial reduction in runtime over-
head by duplicating write instrumentation and parallelizing
read instrumentation.

We also show this platform is flexible enough to be used in
hardware debugging and performance analysis. By assum-
ing cloned ranks should exhibit identical execution we can
perform fast hardware fault detection by observing when this
assumption is violated and correlating the fault to a particu-
lar node. We examine a case study of a recent processor bug
at LLNL that has informed the design of MPIecho. Addi-
tionally, identical execution allows for the parallelization of
hardware performance counter collection, allowing measure-
ment of an arbitrary number of computation-related coun-
ters for a single rank during a single run — a feature par-
ticularly useful when dealing with “chaotic” codes such as
ParaDiS [2]. Finally, cloned ranks may allow for scalable
sensitivity analysis, allowing hundreds of experiments per
rank per run.

We present a design and implementation overview in sec-
tion 2 and measure its overhead across the NAS Parallel
Benchmark suite [14]. We then describe two simple im-
plemented tools: SendCheck (Section 3.4) and Maid (Sec-
tion 4). The former checks to see if all send buffers on
all clones are identical: clones that aren’t may indicate a
node-specific hardware fault. The latter demonstrates how
a heavyweight tool based on Intel’s Pin [13] can be success-
fully parallelized. We detail related work in section 5 and
list several possibilities for future work in section 6.

2. OVERVIEW
The goal of the MPIecho platform is to provide duplicate

execution of arbitrary MPI ranks. Overhead should be kept

to a minimum and the behavior of the clones should not
perturb the correctness of execution. In this section we de-
scribe the software architecture of the platform as well as the
experimental measurement of the tool’s overhead. Further
information about MPIecho can be found in a companion
document [3].

2.1 Design and Implementation
At at high level, the design is simple. At startup, a cloned

MPI rank r (the parent) will distribute all messages it re-
ceives to one or more clones c. Messages sent from the clones
are routed to the parent if necessary but are not otherwise
distributed to the rest of the system (see Figures 1, 2, and
3). So long as the state of a rank depends only on the initial
program state and inputs received via the MPI API, this
general approach will guarantee identical execution on the
clones. The overhead of this approach is dominated by the
additional messages sent to the clones. If the cloned rank is
on the critical path, any additional overhead will accrue in
overall execution time.

At a lower level, the function calls provided by the MPI
API have IN, OUT, and INOUT parameters. When any
function call completes, the OUT and INOUT parameters
should be identical across the parent and clones. For ex-
ample, an MPI_Recv call has a buffer updated by the in-
coming message. This condition also applies to the parts
of the API that are not involved with communication, for
example querying the size of a communicator or construct-
ing a derived datatype. A naive implementation could sim-
ply copy every OUT and INOUT parameter to the clones.
This approach incurs unnecessary overhead and relies on
non-portable knowledge of how opaque handles are imple-
mented. Instead, we have minimized communication be-
tween the parent and clones using the following techniques:

1. Broadcast. The parent communicates with the clones
via MPI_Bcast using a communicator dedicated to that
purpose. In MPI implementations we are familiar with,
this implies the parent sends out only log2(|c|) mes-
sages per communication (where |c| is the number of
clones). We have found this sufficiently fast for our
needs, but scaling this approach to thousands of clones
may require the parent sending a single message to
a single lead clone with the lead clone then (asyn-
chronously)broadcasting to the remaining clones.

2. Opaque handles. MPI relies on several different opaque
handles that cannot be queried except through the
API. Copying these requires knowledge of their in-
ternal structure; this tends to be non-portable. In-
stead, we only communicate on a “need-to-know” ba-
sis. For example, a call to MPI_Comm_split will not
be executed by the clones. Instead, the parent will
send the associated index value of the new commu-
nicator to the clones, along with values for size and
rank. Clones will not use this communicator for com-
municating and so no additional information is needed.
Calls to MPI_Comm_size and MPI_Comm_rank can be re-
solved locally without any further communication with
the parent, thus cutting out a potentially significant
source of overhead.

3. Translucent handles. The MPI_Status datatype is only
partially opaque: users may query several values di-
rectly without going through the API. Any call that

potentially modifies a status results in copying just
these values to the clones. Calls such as MPI_Waitall

with partially visible status values have these values
batched together and sent using a single broadcast.

4. Vectors. MPI calls such as MPI_Alltoallv allow send-
ing and receiving (possibly non-contiguous) vectors.
Using derived datatypes, we construct a datatype that
describes all updated buffers and uses this to issue a
single MPI_Bcast to the clones.

5. Non-blocking communication. Both the clone and par-
ent record the count, type and buffer associated with
each MPI_Request. In the case of the MPI_Wait family
of calls both the parent and clone implicitly wait on
an identical index and the broadcast occurs when the
wait returns. In the case of MPI_Test the results are
communicated in a separate broadcast, followed by the
updated buffer if the test returned true.

6. Barriers. There exist MPI calls with no OUT or IN-
OUT parameters, such as MPI_Barrier. These need
not be executed by the clone at all, as no program
state is changed. The clones resynchronize with the
parent at the next communication call.

7. Return values. MPI calls return an error value, but
there is no provision for recovery if the value is any-
thing other than MPI_SUCCESS. We make the assump-
tion that if an error condition occurs on either the par-
ent or a clone, the only sensible thing to do is indicate
where the error occurred and halt. Future versions of
MPI may make better use of the return codes; if so
they will need to be distributed to the clones as well.

The implementation proper is built on the PMPI profil-
ing interface. We intercept each MPI call and route it to
our library. We used the wrap [8] PMPI header generator
to create the necessary Fortran and C interface code. These
design choices allow us to use a single broadcast in the com-
mon case, and never more than two broadcasts per MPI call.
Overhead is dominated by the size and number of messages.
Effectively, the worst case cost is:

Overhead =Bcast (nranks × typesize ×messagesize)

+ Bcast (nranks × statussize)

Because the clones do not execute any Send functions (unless
required by a tool implementation) they will tend to not
remain on the critical path: the overhead should be limited
to the direct cost of the barriers except in pathological cases.

2.2 Experimental Measurement of Overhead
We intend this platform to support parallel tools, but the

time saved by committing more processors to the tools will
eventually be offset by the additional time necessary to com-
municate with those processors. It is important for the over-
head of the tool itself to contribute as little as possible to
the overall overhead.

All experiments in this paper were executed on the Sierra
cluster at Lawrence Livermore National Laboratory. We
compiled the NAS Parallel Benchmark Suite [14], MPIecho
and tools using GCC 4.1.2 Fortran, C and C++ compil-
ers and -O3 optimizations. We ran the experiments using
MVAPICH2 version 1.5. All results are expressed in terms of

13

MPI_COMM_WORLD 0 1 2 3 4 5 6 7

app_world 0 1 2 3 4 5 6 7

0

1

2

3

4

0

1

2

3

4

0

1

2

8

9

10

11

12

14

15

16

17

Application

Clone

comm_app
MPI_COMM_WORLD
comm_family

Processes Communicators
5

1

2

MPI ranks

Figure 1: Architecture of MPIecho

Bench-
mark Number of clones

8 16 32 64 128 256 512
bt 1.5 -2.7 -2.0 7.3 7.5 6.3 11.5
cg -2.0 -0.3 2.6 3.6 9.0 8.5 15.7
ft 0.3 3.8 2.6 3.5 3.9 3.4 2.7
is 8.7 14.0 13.4 14.4 11.4 10.5 17.5
lu -1.4 4.4 2.2 2.1 -1.5 1.5 9.2
mg 26.5 30.8 33.7 41.0 59.5 67.7 99.0
sp 2.3 0.0 3.6 1.4 6.5 10.2 15.5

Table 1: Percent overhead for cloning rank 0

percent time over the baseline case run without MPIecho.
Process density has a significant affect on execution time:
using 64 12-core nodes to run the baseline 64-process bench-
marks can be usefully compared with 64 processes and 8×64
clones also running on 64 12-core nodes due to increased
cache contention. We made a best-effort to keep process
densities similar across all runs.

In figure 2.2 we show the percent measured overhead for
several clone counts. Creating up to 512 clones of node 0
only incurs 18% execution time overhead for all benchmarks
other than MG. In the case of MG, we observed an unusually
high ratio of communication time to computation time which
did not afford the opportunity to amortize the cost of the
broadcasts to the same extent. However, even in this worst
case we note that this approach still scales well: 512 clones
of node 0 resulted in only doubling execution time. These
results establish the overhead incurred by the platform is low
enough to be useful for parallelizing high-overhead tools.

3. SEND BUFFER CHECK
In this section we give a brief outline of the design, im-

plementation and performance of SendCheck , a tool used to
detect intermittent hardware faults. We illustrate how such
a tool could have been useful in diagnosing a recent CPU
bug at Lawrence Livermore National Laboratory. With in-
creasing processor and core counts, we expect similar tools
to be increasingly important.

4 3 2 1 0

buf buf buf buf buf

0

1. Local XOR of buffer
2. XOR reduce/check on comm_family
3. Send buffer on comm_app

Figure 2: Sending from a cloned process (Used in
Send Buffer Check)

0

2

1 2 3 4

buf
buf buf buf buf

1. Receive buffer on comm_app
2. MPI_Bcast to comm_family

Figure 3: Receiving to a cloned process

3.1 Case Study
A user had reported seeing occasional strange results us-

ing the CAR [4] climate model. To the best of the user’s
knowledge the problem was isolated to a particular cluster
and did not always manifest itself there. At this point, the
members of the Development Environment Group at LLNL
was asked to lend a hand with debugging. Since the problem
appeared to be isolated to a particular cluster, the possibil-
ity of a hardware fault was raised early on in the process.
This was a bit of good luck; many installations do not have
multiple clusters that would allow running suspect programs
on multiple separate hardware configurations.

The first task was to determine if the problem was caused
by a particular compute node. Node assignments on this
particular cluster are nondeterministic and the user might
only occasionally be assigned a particular bad node. After
dozens of test runs the faulty node was eventually isolated.
For a particular sequence of instructions a particular core
failed to round the least significant bit reliably. Because
CAR climate model is highly iterative, repeated faults ulti-
mately caused significant deviation from correct execution.

This bug was pathological in several ways: only a very
specific instruction sequence triggered the fault, the fault is
intermittent, and when the fault does occur it will only be
noticeable in calculations that are sensitive to the values of
the least significant bit. Indeed, one of the most curious
manifestations of this fault was the observations that error
could be introduced into partial results, disappear and the
then reappear later. The design of the software allowed only
partial results to be checked per timestep. These results did
not provide sufficient granularity to isolate the fault to be-
fore or after a particular MPI message. For a complete de-
scription of the bug and the debugging process, see Lee [12].

3.2 Design and implementation
We begin by noting that we are only interested in such

faults that affect the final state of the solution at the root
node. The remaining nodes only affect the root node by
sending messages to it. Rather than having to validate
the entire machine state across multiple clones we have a
far more tractable problem of validating only messages that
would be sent by the clones.

The naive implementation is straightforward. At each
MPI call where data is sent to another node, each clone
copies its send buffer to the parent and the parent compares
the buffers. If the buffers are not identical, the program is
nondeterministic in a sense not accounted for by MPIecho.
If all of the buffers are unique the cause of the nondetermi-
nacy likely lies in the software. If only a single clone has a
different buffer, the most likely explanation would be a fault
isolated to that node. A small number of subsequent runs
should be able to distinguish between the two cases.

Copying potentially large messages is both expensive and
unnecessary. Our implementation takes an md5 hash [5] of
the message buffer and then executes a bitwise MPI XOR
reduce across all clones of a given parent (see Figure 2). This
limits the amount of communication to a 16-byte hash per
clone and allows the parent to perform an inexpensive check
for differences. The saving in communication far outweighs
the expense in creating the hash. This approach will not
catch all errors: pathological conditions may be masked by
the XOR. While unlikely, if this is suspected the user may
fall back to the naive implementation.

Bench-
mark Number of clones

8 16 32 64 128 256 512
bt 2.1 6.7 -0.2 0.0 -0.8 2.5 -0.3
cg 7.5 8.4 13.0 11.3 11.3 14.9 13.4
ft -0.5 -1.8 -0.1 -0.3 -0.7 -0.7 -0.4
is 46.8 46.9 55.0 48.1 50.8 50.8 42.4
lu 6.0 0.2 1.6 3.4 10.9 8.6 -1.5
mg 1.2 2.8 4.1 5.1 4.5 1.2 3.7
sp -1.8 5.4 -0.7 5.7 1.6 -1.8 -2.6

Table 2: Percent additional overhead for Sendcheck

Bench-
mark Number of clones

8 16 32 64 128 256 512
bt 2.0 2.3 -3.7 5.7 5.1 7.4 9.46
cg 11.7 14.5 22.9 22.3 28.5 32.1 39.16
ft 0.5 2.6 3.2 3.9 3.9 3.3 3.01
is 62.2 70.3 78.6 72.2 70.8 69.4 70.05
lu 2.8 2.9 2.1 3.8 7.5 8.4 5.76
mg 26.2 32.7 37.4 46.3 64.5 67.4 103.59
sp 0.3 5.2 2.7 7.0 7.9 8.0 12.08

Table 3: Percent total overhead for Sendcheck

3.3 Experimental Setup
For each of the benchmarks run we dynamically generated

an md5 hash value for every send buffer before each MPI call
executed. This was not restricted to the MPI_Send family,
but included any call that transferred data to another MPI
rank, including MPI_Isend/MPI_Wait and MPI_Alltoallv.
The bitwise XOR of all hashes was send to the parent using
an MPI_Reduce.

3.4 Discussion
Tables 3.4 and 3.4 show the additional and total overhead

of the SendCheck . The overhead is marginal except in the
case of IS. Here, the overhead introduced by the extra calls to
md5sum could only be amortized over small amount of pro-
gram execution. Validating messages up through 512 clones
usually requires at most a 5% additional overhead with the
worst case being less than 55%. (In this case, numerous
small messages did not allow for the usual amortization of
the md5sum costs. We expect this overhead can be low-
ered significantly by selectively applying md5sum based on
message size.)

Had MPIecho been available when diagnosing the Opteron
hardware fault we would have been able to either rule out
hardware faults quickly (if the error appeared to be inde-
pendent of node assignment) or identify the hardware using
a small number of runs. This would have saved months of
debugging time, and we expect this tool be brought into
service debugging production code.

4. MAID
The Intel binary instrumentation platform Pin [13] pro-

vides several examples of tools that leverage its features,
for example address trace generators, cache simulations and
memory checkers. In this section we examine the Maid tool
and explain not only why the serial case exhibits so much
overhead but also how this kind of tool may be parallelized

Bench-
mark Number of clones

1 2 4 8 16 32 64
bt 1466 737 375 207 124 78 53
cg 317 138 131 144 187 185 194
ft 521 294 146 98 106 109 97
is 375 239 144 127 110 107 128
lu 740 369 183 100 58 24 14
mg 810 428 217 136 108 90 101
sp 376 180 84 37 23 14 12

Table 4: Percent total overhead for Maid

using Pin’s ability to selectively instrument individual in-
structions. We then present results using the combination of
Pin, Maid, MPIecho and NAS Parallel Benchmark suite [14].

4.1 Overview
Pin can be thought of as a just-in-time compiler with two

separate user interfaces: instrumentation and analysis. In-
strumentation code determines where dynamic code will be
inserted, and analysis code is what executes at the instru-
mentation points. Instrumentation code executes once when
the binary is loaded into memory. Analysis code executes
whenever the underlying code executes. The overhead due
to instrumentation is paid only once and thus this code can
be relatively complex. The overhead due to analysis will be
paid every time the instruction is executed.

Maid identifies all instructions that access memory (both
reads and writes) and inserts analysis code that checks if the
effective address used by the instruction matches any of the
addresses provided by the user. Similar functionality can
be found in watchpoints in modern debuggers. However, a
serial debugger must check every instruction to see if any
memory references are of interest. A naive parallel imple-
mentation would divide memory regions among the clones
and thus have each clone check only a small fraction of the
potential address space. However, this ends up being as slow
as the serial case: every clone still checks every instruction.

Instead, given n nodes, each clone instruments every nth
instruction, starting from the ith instruction (where i is the
node rank). This does not necessarily distribute the work
evenly. In the pathological case were a single instruction in
a very tight loop forms the majority of execution time, effec-
tively no parallelization will have occurred. However, more
realistic cases involve dozens to hundreds of instructions at
the innermost loop level. Given sufficient clones each clone
will instrument only a single instruction in the loop.

4.2 Experimental Setup
Only clones executed the dynamic binary instrumenta-

tion. We measure overhead against the no-clone, uninstru-
mented case: a single clone with all memory instructions are
instrumented. For two clones, each clone instrumented half
of the instructions, etc. The Maid tool is set up to check
multiple memory locations with the overhead increasing as
more locations are checked. For this set of experiments we
check only a single memory location.

4.3 Results
Table 4 lists our results. For the common case over a small

number of clones we achieved near-linear scaling. In the

most dramatic cases, bt went from an overhead of 1, 466%
to only 53% and lu went from an overhead of 740% to 14%,
both using only 64 additional cores as clones. However, we
note that in several cases the overhead due to additional
nodes begins dominating the savings gained by those nodes:
in the cases of cg, is, and mg performance is worse at 64
clones than at 32 clones. The worst case, cg, still drops
from 317% to 131% using only 4 clones.

4.4 Discussion
Moving from a serial to parallel model of computation not

only led to faster solutions, it also allowed new kinds of prob-
lems to be solved. MPIecho allows a similar transformation
to be brought to bear on debugging tools, especially those
built using heavyweight techniques such as dynamic binary
instrumentation. Methods that may be been left unexplored
or unused to do prohibitive overheads may now be feasible,
so long as they can be parallelized.

5. RELATED WORK
This paper is the most recent in an extensive body of

work using PMPI (the MPI profiling interface) to record or
modify MPI program behavior (e.g., Umpire [24], Libra [9])
and Adagio [21]). In creating a platform for future tools,
MPIecho comes closest to PNMPI [22] which allows chain-
ing disparate tools together into a single software stack. In
a sense, PNMPI allows for vertical integration of compatible
tools while MPIecho allows horizontal integration of (poten-
tially) incompatible tools. We are actively exploring how
the two platforms may be integrated.

The idea of node duplication via PMPI has been used in
the fault tolerance community, particularly rMPI [7], MR-
MPI [6] and VolPEX [11]. Here, duplication ensures that
if any particular node goes down its duplicate will step in
to allow execution to continue without interruption. This
approach requires effectively building a second or third su-
percomputer in order to provide a minimum of redundant
capacity, and this cost has prevented wide adoption of this
technique in the high performance computing community.
In contrast, MPIecho targets only a subset of MPI ranks
and only for the purposes of debugging and measurement.

Heavyweight software debugging tools have existed for
decades and continue to be reliable and essential components
of programmers’ toolboxes. Valgrind and its memcheck [16]
are the canonical example. Both Pin [13] and dyninst [1]
also provide dynamic binary rewriting and instrumentation
platforms and provide tools that range from thread check-
ing (Parallel Inspector [10]) to performance analysis (Open
Speedshop [23] to cache simulation (cachegrind [15]). How-
ever, to the best of our knowledge none of these platforms
or tools have been parallelized, with the single exception of
an attempt to introduce multithreading into Valgrind [19].
While this approach shows promise, it is limited to allowing
existing multithreaded code to execute in parallel.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have sketched the design and implementa-

tion of MPIecho, a platform that allows cloning of arbitrary
MPI ranks. We have demonstrated how this tool can be
used to validate buffers in order to isolate suspected hard-
ware faults as well as show how cloned ranks may be used
to reduce the overhead of heavyweight parallel tools. We

envision many potential tools that will be built on top of
this platform.

Additional Heavyweight Tool Parallelization.
While Valgrind’s memcheck is the most well-know heavy-

weight tool, there are many others based on dynamic binary
rewriting that have even larger overheads. For example,
the thread checking functionality in Intel’s Parallel Inspec-
tor can exceed 1000x. At this point, we do not know how
much of this overhead is parallelizable. However, future su-
percomputing architectures will be far more dependent on
aggressive threading, and even bringing this overhead down
by one order of magnitude should be a significant help to
making these upcoming architectures useful.

Performance Counter Sampling.
The range and detail of hardware performance counters

has blossomed across processor architectures, but Intel-based
systems are still constrained by a limited number of registers
that can be used to read these processors. Multiplexing has
been used in several tools, for example perfctr [18], but this
kind of sampling technique can be problematic for counters
that do not increment often. Where multiplexing is inap-
propriate, the only other alternative has been multiple runs
until all desired counters have been recorded. For measure-
ments that are not affected by MPI communication patterns,
MPIecho provides a way of gathering an arbitrary number
of counters for a single rank during one execution. For ex-
ample, newer Intel processors provide a counter that counts
sampled loads where latency exceeds a user-specified thresh-
old. The most effective way of using this tool is to make
multiple runs, each using a different threshold. MPIecho al-
lows the user to make a single run with each clone using a
unique threshold.

Dynamic Cloning.
The work presented in this paper has focused on making

a large number of clones available to a single rank. We
envision use cases where the rank of interest may change
as the program progresses. MPIecho in combination with
task migration could be used to dynamically assign clones
to ranks, perhaps focusing on the critical path of execution.

Multiple Tool Chains.
The population of clones need not be focused on a single

task. We envision a scenario where some nodes are used for
performance counter collection while others monitor integer
overflow conditions and memory accesses. This could be
particularly powerful when combined with PNMPI [22].

Sensitivity Analysis.
Floating point calculations use doubles by default, and

it’s an open research question as to how much faster code
might run if floats were used versus how much more accu-
rate the code could be if quads were used. Existing work
measures the effect of individual instructions, but MPIecho
could allow a much faster, coarser granularity by operating
on transmitted buffers.

Deterministic Execution.
Some non-deterministic codes such as ParaDiS are opti-

mized to operate on messages as they arrive. This is non-

deterministic on most systems, which leads to unique ex-
ecution on every run, even given the same initial starting
conditions. This makes studying these codes difficult: per-
formance counters, for example, are valid only on the run
for which they are gathered. MPIecho enforces a particular
message order, but might also be modified to perturb the
message order in deterministic ways.

Taint Analysis.
This approach need not be limited to scientific parallel

kernels. A low-level understanding of how input changes
program behavior requires dynamic binary instrumentation.
A successful taint analyzer, TaintCheck, was built using the
Valgrind platform [17]. MPIecho would allow multiple in-
stances of a serial program can be launched with MPI, each
instance of which would be instrumenting only a subset of
the entire binary. The same technique could be applied
to multithreaded and MPI-based applications where tracing
the effects of potentially unfriendly input is required.

Parallel Simulation.
Simulations are perhaps the most heavyweight of all tools,

where overhead is commonly measured in terms of tens of
thousands of percent. MPIecho allows much of this overhead
to be executed in parallel. Using checkpointing, new clones
are generated continually. Each node runs as normal until it
reaches a user-specified point where it transitions into simu-
lation mode. At this point the node is disconnected from the
rest of the family communicator and it continues simulation
until it reaches the next MPI call. At that point it exits and
is a candidate to be brought back via checkpointing. Ideally,
thousand of clones could be simulating different segments of
code in parallel. While the individual simulation segments
are not run any faster, nearly all of the simulation execution
will execute in parallel.

7. REFERENCES
[1] B. Buck and J. K. Hollingsworth. An API for runtime

code patching. The International Journal of High
Performance Computing Applications (IJHPCA),
14:317–329, 2000.

[2] V. Bulatov, W. Cai, M. Hiratani, G. Hommes,
T. Pierce, M. Tang, M. Rhee, K. Yates, and
T. Arsenlis. Scalable line dynamics in ParaDiS. In
Supercomputing, Nov. 2004.

[3] G. Cobb and B. R. H. Tufo. MPIecho: a framework
for transparent MPI task replication. Technical Report
CU-CS 1082-11, University of Colorado, 2011.
Submitted to Cluster 2011.

[4] W. D. Collins and P. J. Rasch. Description of the
NCAR community atmosphere model (CAM 3.0).
Technical Report TN-464+STR, National Center for
Atmospheric Research, 2004.

[5] L. P. Deutsch. Independent implementation of MD5
(RFC 1321). Aladdin Enterprises, 2002.

[6] C. Engelmann and S. B ohm. Redundant execution of
hpc applications with mr-mpi. In Proceedings of the
IASTED International Conference on Parallel and
Distributed Computing and Networks (PDCN), 2011.

[7] K. Ferreira, R. Riesen, R. Oldfield, J. Stearley,
J. Laros, K. Pedretti, T. Kordenbrock, and
R. Brightwell. Increasing fault resiliency in a

message-passing environment. Technical Report
SAND2009-6753, Sandia National Laboratories, 2009.

[8] T. Gamblin. The wrap MPI Wrapper Generator.
https://github.com/tgamblin/wrap, 2011.

[9] T. Gamblin, B. R. de Supinski, M. Schulz, R. J.
Fowler, and D. A. Reed. Scalable load-balance
measurement for SPMD codes. In IEEE/ACM
Supercomputing (SC), 2008.

[10] Intel Corporation. Parallel Inspector.
http://software.intel.com/en-us/articles/

intel-parallel-inspector/, 2011.

[11] T. LeBlanc, R. Anand, E. Gabriel, and J. Subhlok.
VolpexMPI: an MPI library for execution of parallel
applications on volatile nodes. In The 16th
EuroPVM/MPI 2009 Conference, 2009.

[12] G. Lee. Comparative debugging: Identifying the
source of rounding error on atlas587. Technical report,
Lawrence Livermore National Laboratory, 2010.
https://computing.llnl.gov/linux/corefputest.html.

[13] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2005.

[14] NASA Advanced Supercomputing Division. NAS
Parallel Benchmark Suite. http:
//www.nas.nasa.gov/Resources/Software/npb.html,
2006. Version 3.3.

[15] N. Nethercote. Dynamic Binary Analysis and
Instrumentation. PhD thesis, University of
Cambridge, 2004.

[16] N. Nethercote and J. Seward. Valgrind: A framework
for heavyweight dyanmic binary instrumentation. In
ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2007.

[17] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature
generation of exploits on commodity software. In
Proceedings of the 12th Annual Network and
Distributed System Security Symposium (NDSS), 2005.

[18] M. Pettersson. The Linux Performance Counter
Patch. http://user.it.uu.se/mikpe/linux/
perfctr/2.6/ANNOUNCE-2.6.38, 2011.

[19] D. Robson and P. Strazdins. Parallelisation of the
valgrind dynamic binary instrumentation framework.
In IEEE International Symposium on Parallel and
Distributed Processing with Applicationsa, 2008.

[20] Rogue Wave Software. Totalview.
http://www.roguewave.com/products/

totalview-family/totalview.aspx, 2011.

[21] B. Rountree, D. K. Lowenthal, B. de Supinski,
M. Schulz, and V. W. Freeh. Adagio: Making DVS
practial for complex HPC applications. In
International Conference on Supercompuing (ICS),
2009.

[22] M. Schulz and B. R. de Supinski. PNMPI tools: A
whole lot greater than the sum of their parts. In
IEEE/ACM Supercomputing (SC), 2007.

[23] The Krell Institute. Open | SpeedShop Users Guide.
http://www.openspeedshop.org/docs/users_guide/,

2010.

[24] J. S. Vetter and B. R. de Supinski. Dynamic software
testing of MPI applications with Umpire. In
IEEE/ACM Supercomputing (SC), 2000.

